compliance controls are associated with this Policy definition 'Windows machines should meet requirements for 'Security Options - Network Access'' (3ff60f98-7fa4-410a-9f7f-0b00f5afdbdd)
Control Domain |
Control |
Name |
MetadataId |
Category |
Title |
Owner |
Requirements |
Description |
Info |
Policy# |
Azure_Security_Benchmark_v1.0 |
1.11 |
Azure_Security_Benchmark_v1.0_1.11 |
Azure Security Benchmark 1.11 |
Network Security |
Use automated tools to monitor network resource configurations and detect changes |
Customer |
Use Azure Policy to validate (and/or remediate) configuration for network resources.
How to configure and manage Azure Policy:
https://docs.microsoft.com/azure/governance/policy/tutorials/create-and-manage
Azure Policy samples for networking:
https://docs.microsoft.com/azure/governance/policy/samples/#network |
n/a |
link |
7 |
CMMC_L3 |
AC.1.001 |
CMMC_L3_AC.1.001 |
CMMC L3 AC.1.001 |
Access Control |
Limit information system access to authorized users, processes acting on behalf of authorized users, and devices (including other information systems). |
Shared |
Microsoft and the customer share responsibilities for implementing this requirement. |
Access control policies (e.g., identity- or role-based policies, control matrices, and cryptography) control access between active entities or subjects (i.e., users or processes acting on behalf of users) and passive entities or objects (e.g., devices, files, records, and domains) in systems. Access enforcement mechanisms can be employed at the application and service level to provide increased information security. Other systems include systems internal and external to the organization. This requirement focuses on account management for systems and applications. The definition of and enforcement of access authorizations, other than those determined by account type (e.g., privileged verses non-privileged) are addressed in requirement AC.1.002. |
link |
31 |
CMMC_L3 |
AC.1.002 |
CMMC_L3_AC.1.002 |
CMMC L3 AC.1.002 |
Access Control |
Limit information system access to the types of transactions and functions that authorized users are permitted to execute. |
Shared |
Microsoft and the customer share responsibilities for implementing this requirement. |
Organizations may choose to define access privileges or other attributes by account, by type of account, or a combination of both. System account types include individual, shared, group, system, anonymous, guest, emergency, developer, manufacturer, vendor, and temporary. Other attributes required for authorizing access include restrictions on time-of-day, day-of-week, and point-oforigin. In defining other account attributes, organizations consider system-related requirements (e.g., system upgrades scheduled maintenance,) and mission or business requirements, (e.g., time zone differences, customer requirements, remote access to support travel requirements). |
link |
27 |
CMMC_L3 |
AC.2.016 |
CMMC_L3_AC.2.016 |
CMMC L3 AC.2.016 |
Access Control |
Control the flow of CUI in accordance with approved authorizations. |
Shared |
Microsoft and the customer share responsibilities for implementing this requirement. |
Information flow control regulates where information can travel within a system and between systems (versus who can access the information) and without explicit regard to subsequent accesses to that information. Flow control restrictions include the following: keeping exportcontrolled information from being transmitted in the clear to the Internet; blocking outside traffic that claims to be from within the organization; restricting requests to the Internet that are not from the internal web proxy server; and limiting information transfers between organizations based on data structures and content.
Organizations commonly use information flow control policies and enforcement mechanisms to control the flow of information between designated sources and destinations (e.g., networks, individuals, and devices) within systems and between interconnected systems. Flow control is based on characteristics of the information or the information path. Enforcement occurs in boundary protection devices (e.g., gateways, routers, guards, encrypted tunnels, firewalls) that employ rule sets or establish configuration settings that restrict system services, provide a packetfiltering capability based on header information, or message-filtering capability based on message content (e.g., implementing key word searches or using document characteristics). Organizations also consider the trustworthiness of filtering and inspection mechanisms (i.e., hardware, firmware, and software components) that are critical to information flow enforcement.
Transferring information between systems representing different security domains with different security policies introduces risk that such transfers violate one or more domain security policies. In such situations, information owners or stewards provide guidance at designated policy enforcement points between interconnected systems. Organizations consider mandating specific architectural solutions when required to enforce specific security policies. Enforcement includes: prohibiting information transfers between interconnected systems (i.e., allowing access only); employing hardware mechanisms to enforce one-way information flows; and implementing trustworthy regrading mechanisms to reassign security attributes and security labels. |
link |
16 |
CMMC_L3 |
SC.1.175 |
CMMC_L3_SC.1.175 |
CMMC L3 SC.1.175 |
System and Communications Protection |
Monitor, control, and protect communications (i.e., information transmitted or received by organizational systems) at the external boundaries and key internal boundaries of organizational systems. |
Shared |
Microsoft and the customer share responsibilities for implementing this requirement. |
Communications can be monitored, controlled, and protected at boundary components and by restricting or prohibiting interfaces in organizational systems. Boundary components include gateways, routers, firewalls, guards, network-based malicious code analysis and virtualization systems, or encrypted tunnels implemented within a system security architecture (e.g., routers protecting firewalls or application gateways residing on protected subnetworks). Restricting or prohibiting interfaces in organizational systems includes restricting external web communications traffic to designated web servers within managed interfaces and prohibiting external traffic that appears to be spoofing internal addresses.
Organizations consider the shared nature of commercial telecommunications services in the implementation of security requirements associated with the use of such services. Commercial telecommunications services are commonly based on network components and consolidated management systems shared by all attached commercial customers and may also include third party-provided access lines and other service elements. Such transmission services may represent sources of increased risk despite contract security provisions. |
link |
30 |
CMMC_L3 |
SC.3.183 |
CMMC_L3_SC.3.183 |
CMMC L3 SC.3.183 |
System and Communications Protection |
Deny network communications traffic by default and allow network communications traffic by exception (i.e., deny all, permit by exception). |
Shared |
Microsoft and the customer share responsibilities for implementing this requirement. |
This requirement applies to inbound and outbound network communications traffic at the system boundary and at identified points within the system. A deny-all, permit-by-exception network communications traffic policy ensures that only those connections which are essential and approved are allowed. |
link |
30 |
hipaa |
0861.09m2Organizational.67-09.m |
hipaa-0861.09m2Organizational.67-09.m |
0861.09m2Organizational.67-09.m |
08 Network Protection |
0861.09m2Organizational.67-09.m 09.06 Network Security Management |
Shared |
n/a |
To identify and authenticate devices on local and/or wide area networks, including wireless networks, the information system uses either a (i) shared known information solution, or (ii) an organizational authentication solution, the exact selection and strength of which is dependent on the security categorization of the information system. |
|
7 |