compliance controls are associated with this Policy definition 'Azure Key Vault should have firewall enabled' (55615ac9-af46-4a59-874e-391cc3dfb490)
Control Domain |
Control |
Name |
MetadataId |
Category |
Title |
Owner |
Requirements |
Description |
Info |
Policy# |
Azure_Security_Benchmark_v2.0 |
NS-1 |
Azure_Security_Benchmark_v2.0_NS-1 |
Azure Security Benchmark NS-1 |
Network Security |
Implement security for internal traffic |
Customer |
Ensure that all Azure virtual networks follow an enterprise segmentation principle that aligns to the business risks. Any system that could incur higher risk for the organization should be isolated within its own virtual network and sufficiently secured with either a network security group (NSG) and/or Azure Firewall.
Based on your applications and enterprise segmentation strategy, restrict or allow traffic between internal resources based on network security group rules. For specific well-defined applications (such as a 3-tier app), this can be a highly secure "deny by default, permit by exception" approach. This might not scale well if you have many applications and endpoints interacting with each other. You can also use Azure Firewall in circumstances where central management is required over a large number of enterprise segments or spokes (in a hub/spoke topology).
Use Azure Security Center Adaptive Network Hardening to recommend network security group configurations that limit ports and source IPs based with the reference to external network traffic rules.
Use Azure Sentinel to discover the use of legacy insecure protocols such as SSL/TLSv1, SMBv1, LM/NTLMv1, wDigest, Unsigned LDAP Binds, and weak ciphers in Kerberos.
How to create a network security group with security rules: https://docs.microsoft.com/azure/virtual-network/tutorial-filter-network-traffic
How to deploy and configure Azure Firewall: https://docs.microsoft.com/azure/firewall/tutorial-firewall-deploy-portal
Adaptive Network Hardening in Azure Security Center: https://docs.microsoft.com/azure/security-center/security-center-adaptive-network-hardening
Azure Sentinel insecure protocols workbook:https://docs.microsoft.com/azure/sentinel/quickstart-get-visibility#use-built-in-workbooks |
n/a |
link |
18 |
Azure_Security_Benchmark_v2.0 |
NS-4 |
Azure_Security_Benchmark_v2.0_NS-4 |
Azure Security Benchmark NS-4 |
Network Security |
Protect applications and services from external network attacks |
Customer |
Protect Azure resources against attacks from external networks, including distributed denial of service (DDoS) Attacks, application specific attacks, and unsolicited and potentially malicious internet traffic. Azure includes native capabilities for this:
- Use Azure Firewall to protect applications and services against potentially malicious traffic from the internet and other external locations.
- Use Web Application Firewall (WAF) capabilities in Azure Application Gateway, Azure Front Door, and Azure Content Delivery Network (CDN) to protect your applications, services, and APIs against application layer attacks.
- Protect your assets against DDoS attacks by enabling DDoS protection on your Azure virtual networks.
- Use Azure Security Center to detect misconfiguration risks related to the above.
Azure Firewall Documentation: https://docs.microsoft.com/azure/firewall/
How to deploy Azure WAF: https://docs.microsoft.com/azure/web-application-firewall/overview
Manage Azure DDoS Protection using the Azure portal: https://docs.microsoft.com/azure/virtual-network/manage-ddos-protection |
n/a |
link |
14 |
Azure_Security_Benchmark_v3.0 |
DP-8 |
Azure_Security_Benchmark_v3.0_DP-8 |
Microsoft cloud security benchmark DP-8 |
Data Protection |
Ensure security of key and certificate repository |
Shared |
**Security Principle:**
Ensure the security of the key vault service used for the cryptographic key and certificate lifecycle management. Harden your key vault service through access control, network security, logging and monitoring and backup to ensure keys and certificates are always protected using the maximum security.
**Azure Guidance:**
Secure your cryptographic keys and certificates by hardening your Azure Key Vault service through the following controls:
- Restrict the access to keys and certificates in Azure Key Vault using built-in access policies or Azure RBAC to ensure the least privileges principle are in place for management plane access and data plane access.
- Secure the Azure Key Vault using Private Link and Azure Firewall to ensure the minimal exposure of the service
- Ensure separation of duties is place for users who manages encryption keys not have the ability to access encrypted data, and vice versa.
- Use managed identity to access keys stored in the Azure Key Vault in your workload applications.
- Never have the keys stored in plaintext format outside of the Azure Key Vault.
- When purging data, ensure your keys are not deleted before the actual data, backups and archives are purged.
- Backup your keys and certificates using the Azure Key Vault. Enable soft delete and purge protection to avoid accidental deletion of keys.
- Turn on Azure Key Vault logging to ensure the critical management plane and data plane activities are logged.
**Implementation and additional context:**
Azure Key Vault overview:
https://docs.microsoft.com/azure/key-vault/general/overview
Azure Key Vault security best practices:
https://docs.microsoft.com/azure/key-vault/general/best-practices
Use managed identity to access Azure Key Vault:
https://docs.microsoft.com/azure/active-directory/managed-identities-azure-resources/tutorial-windows-vm-access-nonaad
|
n/a |
link |
6 |
Azure_Security_Benchmark_v3.0 |
NS-2 |
Azure_Security_Benchmark_v3.0_NS-2 |
Microsoft cloud security benchmark NS-2 |
Network Security |
Secure cloud services with network controls |
Shared |
**Security Principle:**
Secure cloud services by establishing a private access point for the resources. You should also disable or restrict access from public network when possible.
**Azure Guidance:**
Deploy private endpoints for all Azure resources that support the Private Link feature, to establish a private access point for the resources. You should also disable or restrict public network access to services where feasible.
For certain services, you also have the option to deploy VNet integration for the service where you can restrict the VNET to establish a private access point for the service.
**Implementation and additional context:**
Understand Azure Private Link:
https://docs.microsoft.com/azure/private-link/private-link-overview |
n/a |
link |
40 |
CMMC_2.0_L2 |
AC.L2-3.1.3 |
CMMC_2.0_L2_AC.L2-3.1.3 |
404 not found |
|
|
|
n/a |
n/a |
|
52 |
CMMC_2.0_L2 |
SC.L1-3.13.1 |
CMMC_2.0_L2_SC.L1-3.13.1 |
404 not found |
|
|
|
n/a |
n/a |
|
56 |
CMMC_2.0_L2 |
SC.L1-3.13.5 |
CMMC_2.0_L2_SC.L1-3.13.5 |
404 not found |
|
|
|
n/a |
n/a |
|
51 |
CMMC_2.0_L2 |
SC.L2-3.13.2 |
CMMC_2.0_L2_SC.L2-3.13.2 |
404 not found |
|
|
|
n/a |
n/a |
|
51 |
CMMC_2.0_L2 |
SC.L2-3.13.6 |
CMMC_2.0_L2_SC.L2-3.13.6 |
404 not found |
|
|
|
n/a |
n/a |
|
26 |
CMMC_L3 |
AC.1.001 |
CMMC_L3_AC.1.001 |
CMMC L3 AC.1.001 |
Access Control |
Limit information system access to authorized users, processes acting on behalf of authorized users, and devices (including other information systems). |
Shared |
Microsoft and the customer share responsibilities for implementing this requirement. |
Access control policies (e.g., identity- or role-based policies, control matrices, and cryptography) control access between active entities or subjects (i.e., users or processes acting on behalf of users) and passive entities or objects (e.g., devices, files, records, and domains) in systems. Access enforcement mechanisms can be employed at the application and service level to provide increased information security. Other systems include systems internal and external to the organization. This requirement focuses on account management for systems and applications. The definition of and enforcement of access authorizations, other than those determined by account type (e.g., privileged verses non-privileged) are addressed in requirement AC.1.002. |
link |
31 |
CMMC_L3 |
AC.1.002 |
CMMC_L3_AC.1.002 |
CMMC L3 AC.1.002 |
Access Control |
Limit information system access to the types of transactions and functions that authorized users are permitted to execute. |
Shared |
Microsoft and the customer share responsibilities for implementing this requirement. |
Organizations may choose to define access privileges or other attributes by account, by type of account, or a combination of both. System account types include individual, shared, group, system, anonymous, guest, emergency, developer, manufacturer, vendor, and temporary. Other attributes required for authorizing access include restrictions on time-of-day, day-of-week, and point-oforigin. In defining other account attributes, organizations consider system-related requirements (e.g., system upgrades scheduled maintenance,) and mission or business requirements, (e.g., time zone differences, customer requirements, remote access to support travel requirements). |
link |
27 |
CMMC_L3 |
CM.2.064 |
CMMC_L3_CM.2.064 |
CMMC L3 CM.2.064 |
Configuration Management |
Establish and enforce security configuration settings for information technology products employed in organizational systems. |
Shared |
Microsoft and the customer share responsibilities for implementing this requirement. |
Configuration settings are the set of parameters that can be changed in hardware, software, or firmware components of the system that affect the security posture or functionality of the system. Information technology products for which security-related configuration settings can be defined include mainframe computers, servers, workstations, input and output devices (e.g., scanners, copiers, and printers), network components (e.g., firewalls, routers, gateways, voice and data switches, wireless access points, network appliances, sensors), operating systems, middleware, and applications.
Security parameters are those parameters impacting the security state of systems including the parameters required to satisfy other security requirements. Security parameters include: registry settings; account, file, directory permission settings; and settings for functions, ports, protocols, and remote connections. Organizations establish organization-wide configuration settings and subsequently derive specific configuration settings for systems. The established settings become part of the systems configuration baseline.
Common secure configurations (also referred to as security configuration checklists, lockdown and hardening guides, security reference guides, security technical implementation guides) provide recognized, standardized, and established benchmarks that stipulate secure configuration settings for specific information technology platforms/products and instructions for configuring those system components to meet operational requirements. Common secure configurations can be developed by a variety of organizations including information technology product developers, manufacturers, vendors, consortia, academia, industry, federal agencies, and other organizations in the public and private sectors. |
link |
10 |
CMMC_L3 |
IR.2.093 |
CMMC_L3_IR.2.093 |
CMMC L3 IR.2.093 |
Incident Response |
Detect and report events. |
Shared |
Microsoft and the customer share responsibilities for implementing this requirement. |
The monitoring, identification, and reporting of events are the foundation for incident identification and commence the incident life cycle. Events potentially affect the productivity of organizational assets and, in turn, associated services. These events must be captured and analyzed so that the organization can determine whether an event will become (or has become) an incident that requires organizational action. The extent to which an organization can identify events improves its ability to manage and control incidents and their potential effects. |
link |
18 |
CMMC_L3 |
SC.3.183 |
CMMC_L3_SC.3.183 |
CMMC L3 SC.3.183 |
System and Communications Protection |
Deny network communications traffic by default and allow network communications traffic by exception (i.e., deny all, permit by exception). |
Shared |
Microsoft and the customer share responsibilities for implementing this requirement. |
This requirement applies to inbound and outbound network communications traffic at the system boundary and at identified points within the system. A deny-all, permit-by-exception network communications traffic policy ensures that only those connections which are essential and approved are allowed. |
link |
30 |
CMMC_L3 |
SC.3.187 |
CMMC_L3_SC.3.187 |
CMMC L3 SC.3.187 |
System and Communications Protection |
Establish and manage cryptographic keys for cryptography employed in organizational systems. |
Shared |
Microsoft and the customer share responsibilities for implementing this requirement. |
Cryptographic key management and establishment can be performed using manual procedures or mechanisms supported by manual procedures. Organizations define key management requirements in accordance with applicable federal laws, Executive Orders, policies, directives, regulations, and standards specifying appropriate options, levels, and parameters. |
link |
8 |
FedRAMP_High_R4 |
AC-4 |
FedRAMP_High_R4_AC-4 |
FedRAMP High AC-4 |
Access Control |
Information Flow Enforcement |
Shared |
n/a |
The information system enforces approved authorizations for controlling the flow of information within the system and between interconnected systems based on [Assignment: organization-defined information flow control policies].
Supplemental Guidance: Information flow control regulates where information is allowed to travel within an information system and between information systems (as opposed to who is allowed to access the information) and without explicit regard to subsequent accesses to that information. Flow control restrictions include, for example, keeping export-controlled information from being transmitted in the clear to the Internet, blocking outside traffic that claims to be from within the organization, restricting web requests to the Internet that are not from the internal web proxy server, and limiting information transfers between organizations based on data structures and content. Transferring information between information systems representing different security domains with different security policies introduces risk that such transfers violate one or more domain security policies. In such situations, information owners/stewards provide guidance at designated policy enforcement points between interconnected systems. Organizations consider mandating specific architectural solutions when required to enforce specific security policies. Enforcement includes, for example: (i) prohibiting information transfers between interconnected systems (i.e., allowing access only); (ii) employing hardware mechanisms to enforce one-way information flows; and (iii) implementing trustworthy regarding mechanisms to reassign security attributes and security labels.
Organizations commonly employ information flow control policies and enforcement mechanisms to control the flow of information between designated sources and destinations (e.g., networks, individuals, and devices) within information systems and between interconnected systems. Flow control is based on the characteristics of the information and/or the information path. Enforcement occurs, for example, in boundary protection devices (e.g., gateways, routers, guards, encrypted tunnels, firewalls) that employ rule sets or establish configuration settings that restrict information system services, provide a packet-filtering capability based on header information, or message- filtering capability based on message content (e.g., implementing key word searches or using document characteristics). Organizations also consider the trustworthiness of filtering/inspection mechanisms (i.e., hardware, firmware, and software components) that are critical to information flow enforcement. Control enhancements 3 through 22 primarily address cross-domain solution needs which focus on more advanced filtering techniques, in-depth analysis, and stronger flow enforcement mechanisms implemented in cross-domain products, for example, high-assurance guards. Such capabilities are generally not available in commercial off-the-shelf information technology products. Related controls: AC-3, AC-17, AC-19, AC-21, CM-6, CM-7, SA-8, SC-2, SC-5, SC-7, SC-18.
References: None. |
link |
52 |
FedRAMP_High_R4 |
SC-7 |
FedRAMP_High_R4_SC-7 |
FedRAMP High SC-7 |
System And Communications Protection |
Boundary Protection |
Shared |
n/a |
The information system:
a. Monitors and controls communications at the external boundary of the system and at key internal boundaries within the system;
b. Implements subnetworks for publicly accessible system components that are [Selection: physically; logically] separated from internal organizational networks; and
c. Connects to external networks or information systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security architecture.
Supplemental Guidance: Managed interfaces include, for example, gateways, routers, firewalls, guards, network-based malicious code analysis and virtualization systems, or encrypted tunnels implemented within a security architecture (e.g., routers protecting firewalls or application gateways residing on protected subnetworks). Subnetworks that are physically or logically separated from internal networks are referred to as demilitarized zones or DMZs. Restricting or prohibiting interfaces within organizational information systems includes, for example, restricting external web traffic to designated web servers within managed interfaces and prohibiting external traffic that appears to be spoofing internal addresses. Organizations consider the shared nature of commercial telecommunications services in the implementation of security controls associated with the use of such services. Commercial telecommunications services are commonly based on network components and consolidated management systems shared by all attached commercial customers, and may also include third party-provided access lines and other service elements. Such transmission services may represent sources of increased risk despite contract security provisions. Related controls: AC-4, AC-17, CA-3, CM-7, CP-8, IR-4, RA-3, SC-5, SC-13.
References: FIPS Publication 199; NIST Special Publications 800-41, 800-77. |
link |
52 |
FedRAMP_High_R4 |
SC-7(3) |
FedRAMP_High_R4_SC-7(3) |
FedRAMP High SC-7 (3) |
System And Communications Protection |
Access Points |
Shared |
n/a |
The organization limits the number of external network connections to the information system.
Supplemental Guidance: Limiting the number of external network connections facilitates more comprehensive monitoring of inbound and outbound communications traffic. The Trusted Internet Connection (TIC) initiative is an example of limiting the number of external network connections. |
link |
51 |
FedRAMP_Moderate_R4 |
AC-4 |
FedRAMP_Moderate_R4_AC-4 |
FedRAMP Moderate AC-4 |
Access Control |
Information Flow Enforcement |
Shared |
n/a |
The information system enforces approved authorizations for controlling the flow of information within the system and between interconnected systems based on [Assignment: organization-defined information flow control policies].
Supplemental Guidance: Information flow control regulates where information is allowed to travel within an information system and between information systems (as opposed to who is allowed to access the information) and without explicit regard to subsequent accesses to that information. Flow control restrictions include, for example, keeping export-controlled information from being transmitted in the clear to the Internet, blocking outside traffic that claims to be from within the organization, restricting web requests to the Internet that are not from the internal web proxy server, and limiting information transfers between organizations based on data structures and content. Transferring information between information systems representing different security domains with different security policies introduces risk that such transfers violate one or more domain security policies. In such situations, information owners/stewards provide guidance at designated policy enforcement points between interconnected systems. Organizations consider mandating specific architectural solutions when required to enforce specific security policies. Enforcement includes, for example: (i) prohibiting information transfers between interconnected systems (i.e., allowing access only); (ii) employing hardware mechanisms to enforce one-way information flows; and (iii) implementing trustworthy regarding mechanisms to reassign security attributes and security labels.
Organizations commonly employ information flow control policies and enforcement mechanisms to control the flow of information between designated sources and destinations (e.g., networks, individuals, and devices) within information systems and between interconnected systems. Flow control is based on the characteristics of the information and/or the information path. Enforcement occurs, for example, in boundary protection devices (e.g., gateways, routers, guards, encrypted tunnels, firewalls) that employ rule sets or establish configuration settings that restrict information system services, provide a packet-filtering capability based on header information, or message- filtering capability based on message content (e.g., implementing key word searches or using document characteristics). Organizations also consider the trustworthiness of filtering/inspection mechanisms (i.e., hardware, firmware, and software components) that are critical to information flow enforcement. Control enhancements 3 through 22 primarily address cross-domain solution needs which focus on more advanced filtering techniques, in-depth analysis, and stronger flow enforcement mechanisms implemented in cross-domain products, for example, high-assurance guards. Such capabilities are generally not available in commercial off-the-shelf information technology products. Related controls: AC-3, AC-17, AC-19, AC-21, CM-6, CM-7, SA-8, SC-2, SC-5, SC-7, SC-18.
References: None. |
link |
52 |
FedRAMP_Moderate_R4 |
SC-7 |
FedRAMP_Moderate_R4_SC-7 |
FedRAMP Moderate SC-7 |
System And Communications Protection |
Boundary Protection |
Shared |
n/a |
The information system:
a. Monitors and controls communications at the external boundary of the system and at key internal boundaries within the system;
b. Implements subnetworks for publicly accessible system components that are [Selection: physically; logically] separated from internal organizational networks; and
c. Connects to external networks or information systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security architecture.
Supplemental Guidance: Managed interfaces include, for example, gateways, routers, firewalls, guards, network-based malicious code analysis and virtualization systems, or encrypted tunnels implemented within a security architecture (e.g., routers protecting firewalls or application gateways residing on protected subnetworks). Subnetworks that are physically or logically separated from internal networks are referred to as demilitarized zones or DMZs. Restricting or prohibiting interfaces within organizational information systems includes, for example, restricting external web traffic to designated web servers within managed interfaces and prohibiting external traffic that appears to be spoofing internal addresses. Organizations consider the shared nature of commercial telecommunications services in the implementation of security controls associated with the use of such services. Commercial telecommunications services are commonly based on network components and consolidated management systems shared by all attached commercial customers, and may also include third party-provided access lines and other service elements. Such transmission services may represent sources of increased risk despite contract security provisions. Related controls: AC-4, AC-17, CA-3, CM-7, CP-8, IR-4, RA-3, SC-5, SC-13.
References: FIPS Publication 199; NIST Special Publications 800-41, 800-77. |
link |
52 |
FedRAMP_Moderate_R4 |
SC-7(3) |
FedRAMP_Moderate_R4_SC-7(3) |
FedRAMP Moderate SC-7 (3) |
System And Communications Protection |
Access Points |
Shared |
n/a |
The organization limits the number of external network connections to the information system.
Supplemental Guidance: Limiting the number of external network connections facilitates more comprehensive monitoring of inbound and outbound communications traffic. The Trusted Internet Connection (TIC) initiative is an example of limiting the number of external network connections. |
link |
51 |
|
mp.com.1 Secure perimeter |
mp.com.1 Secure perimeter |
404 not found |
|
|
|
n/a |
n/a |
|
49 |
New_Zealand_ISM |
18.1.13.C.02 |
New_Zealand_ISM_18.1.13.C.02 |
New_Zealand_ISM_18.1.13.C.02 |
18. Network security |
18.1.13.C.02 Limiting network access |
|
n/a |
Agencies SHOULD implement network access controls on all networks. |
|
19 |
NIST_SP_800-171_R2_3 |
.1.3 |
NIST_SP_800-171_R2_3.1.3 |
NIST SP 800-171 R2 3.1.3 |
Access Control |
Control the flow of CUI in accordance with approved authorizations. |
Shared |
Microsoft and the customer share responsibilities for implementing this requirement. |
Information flow control regulates where information can travel within a system and between systems (versus who can access the information) and without explicit regard to subsequent accesses to that information. Flow control restrictions include the following: keeping export-controlled information from being transmitted in the clear to the Internet; blocking outside traffic that claims to be from within the organization; restricting requests to the Internet that are not from the internal web proxy server; and limiting information transfers between organizations based on data structures and content. Organizations commonly use information flow control policies and enforcement mechanisms to control the flow of information between designated sources and destinations (e.g., networks, individuals, and devices) within systems and between interconnected systems. Flow control is based on characteristics of the information or the information path. Enforcement occurs in boundary protection devices (e.g., gateways, routers, guards, encrypted tunnels, firewalls) that employ rule sets or establish configuration settings that restrict system services, provide a packet-filtering capability based on header information, or message-filtering capability based on message content (e.g., implementing key word searches or using document characteristics). Organizations also consider the trustworthiness of filtering and inspection mechanisms (i.e., hardware, firmware, and software components) that are critical to information flow enforcement. Transferring information between systems representing different security domains with different security policies introduces risk that such transfers violate one or more domain security policies. In such situations, information owners or stewards provide guidance at designated policy enforcement points between interconnected systems. Organizations consider mandating specific architectural solutions when required to enforce specific security policies. Enforcement includes: prohibiting information transfers between interconnected systems (i.e., allowing access only); employing hardware mechanisms to enforce one-way information flows; and implementing trustworthy regrading mechanisms to reassign security attributes and security labels. |
link |
56 |
NIST_SP_800-171_R2_3 |
.13.1 |
NIST_SP_800-171_R2_3.13.1 |
NIST SP 800-171 R2 3.13.1 |
System and Communications Protection |
Monitor, control, and protect communications (i.e., information transmitted or received by organizational systems) at the external boundaries and key internal boundaries of organizational systems. |
Shared |
Microsoft and the customer share responsibilities for implementing this requirement. |
Communications can be monitored, controlled, and protected at boundary components and by restricting or prohibiting interfaces in organizational systems. Boundary components include gateways, routers, firewalls, guards, network-based malicious code analysis and virtualization systems, or encrypted tunnels implemented within a system security architecture (e.g., routers protecting firewalls or application gateways residing on protected subnetworks). Restricting or prohibiting interfaces in organizational systems includes restricting external web communications traffic to designated web servers within managed interfaces and prohibiting external traffic that appears to be spoofing internal addresses. Organizations consider the shared nature of commercial telecommunications services in the implementation of security requirements associated with the use of such services. Commercial telecommunications services are commonly based on network components and consolidated management systems shared by all attached commercial customers and may also include third party-provided access lines and other service elements. Such transmission services may represent sources of increased risk despite contract security provisions. [SP 800-41] provides guidance on firewalls and firewall policy. [SP 800-125B] provides guidance on security for virtualization technologies.
[28] There is no prescribed format or specified level of detail for system security plans. However, organizations ensure that the required information in 3.12.4 is conveyed in those plans. |
link |
51 |
NIST_SP_800-171_R2_3 |
.13.2 |
NIST_SP_800-171_R2_3.13.2 |
NIST SP 800-171 R2 3.13.2 |
System and Communications Protection |
Employ architectural designs, software development techniques, and systems engineering principles that promote effective information security within organizational systems. |
Shared |
Microsoft and the customer share responsibilities for implementing this requirement. |
Organizations apply systems security engineering principles to new development systems or systems undergoing major upgrades. For legacy systems, organizations apply systems security engineering principles to system upgrades and modifications to the extent feasible, given the current state of hardware, software, and firmware components within those systems. The application of systems security engineering concepts and principles helps to develop trustworthy, secure, and resilient systems and system components and reduce the susceptibility of organizations to disruptions, hazards, and threats. Examples of these concepts and principles include developing layered protections; establishing security policies, architecture, and controls as the foundation for design; incorporating security requirements into the system development life cycle; delineating physical and logical security boundaries; ensuring that developers are trained on how to build secure software; and performing threat modeling to identify use cases, threat agents, attack vectors and patterns, design patterns, and compensating controls needed to mitigate risk. Organizations that apply security engineering concepts and principles can facilitate the development of trustworthy, secure systems, system components, and system services; reduce risk to acceptable levels; and make informed risk-management decisions. [SP 800-160-1] provides guidance on systems security engineering. |
link |
51 |
NIST_SP_800-171_R2_3 |
.13.5 |
NIST_SP_800-171_R2_3.13.5 |
NIST SP 800-171 R2 3.13.5 |
System and Communications Protection |
Implement subnetworks for publicly accessible system components that are physically or logically separated from internal networks. |
Shared |
Microsoft and the customer share responsibilities for implementing this requirement. |
Subnetworks that are physically or logically separated from internal networks are referred to as demilitarized zones (DMZs). DMZs are typically implemented with boundary control devices and techniques that include routers, gateways, firewalls, virtualization, or cloud-based technologies. [SP 800-41] provides guidance on firewalls and firewall policy. [SP 800-125B] provides guidance on security for virtualization technologies |
link |
51 |
NIST_SP_800-171_R2_3 |
.13.6 |
NIST_SP_800-171_R2_3.13.6 |
NIST SP 800-171 R2 3.13.6 |
System and Communications Protection |
Deny network communications traffic by default and allow network communications traffic by exception (i.e., deny all, permit by exception). |
Shared |
Microsoft and the customer share responsibilities for implementing this requirement. |
This requirement applies to inbound and outbound network communications traffic at the system boundary and at identified points within the system. A deny-all, permit-by-exception network communications traffic policy ensures that only those connections which are essential and approved are allowed. |
link |
22 |
NIST_SP_800-53_R4 |
AC-4 |
NIST_SP_800-53_R4_AC-4 |
NIST SP 800-53 Rev. 4 AC-4 |
Access Control |
Information Flow Enforcement |
Shared |
n/a |
The information system enforces approved authorizations for controlling the flow of information within the system and between interconnected systems based on [Assignment: organization-defined information flow control policies].
Supplemental Guidance: Information flow control regulates where information is allowed to travel within an information system and between information systems (as opposed to who is allowed to access the information) and without explicit regard to subsequent accesses to that information. Flow control restrictions include, for example, keeping export-controlled information from being transmitted in the clear to the Internet, blocking outside traffic that claims to be from within the organization, restricting web requests to the Internet that are not from the internal web proxy server, and limiting information transfers between organizations based on data structures and content. Transferring information between information systems representing different security domains with different security policies introduces risk that such transfers violate one or more domain security policies. In such situations, information owners/stewards provide guidance at designated policy enforcement points between interconnected systems. Organizations consider mandating specific architectural solutions when required to enforce specific security policies. Enforcement includes, for example: (i) prohibiting information transfers between interconnected systems (i.e., allowing access only); (ii) employing hardware mechanisms to enforce one-way information flows; and (iii) implementing trustworthy regarding mechanisms to reassign security attributes and security labels.
Organizations commonly employ information flow control policies and enforcement mechanisms to control the flow of information between designated sources and destinations (e.g., networks, individuals, and devices) within information systems and between interconnected systems. Flow control is based on the characteristics of the information and/or the information path. Enforcement occurs, for example, in boundary protection devices (e.g., gateways, routers, guards, encrypted tunnels, firewalls) that employ rule sets or establish configuration settings that restrict information system services, provide a packet-filtering capability based on header information, or message- filtering capability based on message content (e.g., implementing key word searches or using document characteristics). Organizations also consider the trustworthiness of filtering/inspection mechanisms (i.e., hardware, firmware, and software components) that are critical to information flow enforcement. Control enhancements 3 through 22 primarily address cross-domain solution needs which focus on more advanced filtering techniques, in-depth analysis, and stronger flow enforcement mechanisms implemented in cross-domain products, for example, high-assurance guards. Such capabilities are generally not available in commercial off-the-shelf information technology products. Related controls: AC-3, AC-17, AC-19, AC-21, CM-6, CM-7, SA-8, SC-2, SC-5, SC-7, SC-18.
References: None. |
link |
52 |
NIST_SP_800-53_R4 |
SC-7 |
NIST_SP_800-53_R4_SC-7 |
NIST SP 800-53 Rev. 4 SC-7 |
System And Communications Protection |
Boundary Protection |
Shared |
n/a |
The information system:
a. Monitors and controls communications at the external boundary of the system and at key internal boundaries within the system;
b. Implements subnetworks for publicly accessible system components that are [Selection: physically; logically] separated from internal organizational networks; and
c. Connects to external networks or information systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security architecture.
Supplemental Guidance: Managed interfaces include, for example, gateways, routers, firewalls, guards, network-based malicious code analysis and virtualization systems, or encrypted tunnels implemented within a security architecture (e.g., routers protecting firewalls or application gateways residing on protected subnetworks). Subnetworks that are physically or logically separated from internal networks are referred to as demilitarized zones or DMZs. Restricting or prohibiting interfaces within organizational information systems includes, for example, restricting external web traffic to designated web servers within managed interfaces and prohibiting external traffic that appears to be spoofing internal addresses. Organizations consider the shared nature of commercial telecommunications services in the implementation of security controls associated with the use of such services. Commercial telecommunications services are commonly based on network components and consolidated management systems shared by all attached commercial customers, and may also include third party-provided access lines and other service elements. Such transmission services may represent sources of increased risk despite contract security provisions. Related controls: AC-4, AC-17, CA-3, CM-7, CP-8, IR-4, RA-3, SC-5, SC-13.
References: FIPS Publication 199; NIST Special Publications 800-41, 800-77. |
link |
52 |
NIST_SP_800-53_R4 |
SC-7(3) |
NIST_SP_800-53_R4_SC-7(3) |
NIST SP 800-53 Rev. 4 SC-7 (3) |
System And Communications Protection |
Access Points |
Shared |
n/a |
The organization limits the number of external network connections to the information system.
Supplemental Guidance: Limiting the number of external network connections facilitates more comprehensive monitoring of inbound and outbound communications traffic. The Trusted Internet Connection (TIC) initiative is an example of limiting the number of external network connections. |
link |
51 |
NIST_SP_800-53_R5 |
AC-4 |
NIST_SP_800-53_R5_AC-4 |
NIST SP 800-53 Rev. 5 AC-4 |
Access Control |
Information Flow Enforcement |
Shared |
n/a |
Enforce approved authorizations for controlling the flow of information within the system and between connected systems based on [Assignment: organization-defined information flow control policies]. |
link |
52 |
NIST_SP_800-53_R5 |
SC-7 |
NIST_SP_800-53_R5_SC-7 |
NIST SP 800-53 Rev. 5 SC-7 |
System and Communications Protection |
Boundary Protection |
Shared |
n/a |
a. Monitor and control communications at the external managed interfaces to the system and at key internal managed interfaces within the system;
b. Implement subnetworks for publicly accessible system components that are [Selection: physically;logically] separated from internal organizational networks; and
c. Connect to external networks or systems only through managed interfaces consisting of boundary protection devices arranged in accordance with an organizational security and privacy architecture. |
link |
52 |
NIST_SP_800-53_R5 |
SC-7(3) |
NIST_SP_800-53_R5_SC-7(3) |
NIST SP 800-53 Rev. 5 SC-7 (3) |
System and Communications Protection |
Access Points |
Shared |
n/a |
Limit the number of external network connections to the system. |
link |
51 |
NL_BIO_Cloud_Theme |
U.07.1(2) |
NL_BIO_Cloud_Theme_U.07.1(2) |
NL_BIO_Cloud_Theme_U.07.1(2) |
U.07 Data separation |
Isolated |
|
n/a |
Permanent isolation of data is realized within a multi-tenant architecture. Patches and adjustments of applications and infrastructure are realized in a controlled manner for all cloud services that the CSC purchases. |
|
57 |
RBI_CSF_Banks_v2016 |
14.1 |
RBI_CSF_Banks_v2016_14.1 |
|
Anti-Phishing |
Anti-Phishing-14.1 |
|
n/a |
Subscribe to Anti-phishing/anti-rouge app services from external service providers for identifying and taking down phishing websites/rouge applications. |
|
28 |
RBI_CSF_Banks_v2016 |
21.1 |
RBI_CSF_Banks_v2016_21.1 |
|
Metrics |
Metrics-21.1 |
|
n/a |
Develop a comprehensive set of metrics that provide for prospective and
retrospective measures, like key performance indicators and key risk indicators |
|
15 |
RBI_CSF_Banks_v2016 |
7.7 |
RBI_CSF_Banks_v2016_7.7 |
|
Patch/Vulnerability & Change Management |
Patch/Vulnerability & Change Management-7.7 |
|
n/a |
Periodically evaluate the access device configurations and patch levels to ensure
that all access points, nodes between (i) different VLANs in the Data Centre (ii)
LAN/WAN interfaces (iii) bank???s network to external network and interconnections
with partner, vendor and service provider networks are to be securely configured. |
|
25 |
RBI_ITF_NBFC_v2017 |
3.1.h |
RBI_ITF_NBFC_v2017_3.1.h |
RBI IT Framework 3.1.h |
Information and Cyber Security |
Public Key Infrastructure (PKI)-3.1 |
|
n/a |
The IS Policy must provide for a IS framework with the following basic tenets:
Public Key Infrastructure (PKI) - NBFCs may increase the usage of PKI to ensure confidentiality of data, access control, data integrity, authentication and nonrepudiation. |
link |
31 |
SWIFT_CSCF_v2021 |
1.1 |
SWIFT_CSCF_v2021_1.1 |
SWIFT CSCF v2021 1.1 |
SWIFT Environment Protection |
SWIFT Environment Protection |
|
n/a |
Ensure the protection of the user's local SWIFT infrastructure from potentially compromised elements of the general IT environment and external environment. |
link |
28 |
SWIFT_CSCF_v2022 |
1.1 |
SWIFT_CSCF_v2022_1.1 |
SWIFT CSCF v2022 1.1 |
1. Restrict Internet Access & Protect Critical Systems from General IT Environment |
Ensure the protection of the user's local SWIFT infrastructure from potentially compromised elements of the general IT environment and external environment. |
Shared |
n/a |
A separated secure zone safeguards the user's SWIFT infrastructure from compromises and attacks on the broader enterprise and external environments. |
link |
19 |
SWIFT_CSCF_v2022 |
1.5A |
SWIFT_CSCF_v2022_1.5A |
SWIFT CSCF v2022 1.5A |
1. Restrict Internet Access & Protect Critical Systems from General IT Environment |
Ensure the protection of the customer’s connectivity infrastructure from external environment and potentially compromised elements of the general IT environment. |
Shared |
n/a |
A separated secure zone safeguards the customer's infrastructure used for external connectivity from external environments and compromises or attacks on the broader enterprise environment. |
link |
24 |
|
U.07.1 - Isolated |
U.07.1 - Isolated |
404 not found |
|
|
|
n/a |
n/a |
|
56 |