compliance controls are associated with this Policy definition 'Azure Key Vault Managed HSM should have purge protection enabled' (c39ba22d-4428-4149-b981-70acb31fc383)
Control Domain |
Control |
Name |
MetadataId |
Category |
Title |
Owner |
Requirements |
Description |
Info |
Policy# |
CIS_Azure_1.1.0 |
8.4 |
CIS_Azure_1.1.0_8.4 |
CIS Microsoft Azure Foundations Benchmark recommendation 8.4 |
8 Other Security Considerations |
Ensure the key vault is recoverable |
Shared |
The customer is responsible for implementing this recommendation. |
The key vault contains object keys, secrets and certificates. Accidental unavailability of a key vault can cause immediate data loss or loss of security functions (authentication, validation, verification, non-repudiation, etc.) supported by the key vault objects.
It is recommended the key vault be made recoverable by enabling the "Do Not Purge" and "Soft Delete" functions. This is in order to prevent loss of encrypted data including storage accounts, SQL databases, and/or dependent services provided by key vault objects (Keys, Secrets, Certificates) etc., as may happen in the case of accidental deletion by a user or from disruptive activity by a malicious user. |
link |
3 |
hipaa |
1635.12b1Organizational.2-12.b |
hipaa-1635.12b1Organizational.2-12.b |
1635.12b1Organizational.2-12.b |
16 Business Continuity & Disaster Recovery |
1635.12b1Organizational.2-12.b 12.01 Information Security Aspects of Business Continuity Management |
Shared |
n/a |
Information security aspects of business continuity are: (i) based on identifying events (or sequence of events) that can cause interruptions to the organization's critical business processes (e.g., equipment failure, human errors, theft, fire, natural disasters acts of terrorism); (ii) followed by a risk assessment to determine the probability and impact of such interruptions, in terms of time, damage scale and recovery period; (iii) based on the results of the risk assessment, a business continuity strategy is developed to identify the overall approach to business continuity; and, (iv) once this strategy has been created, endorsement is provided by management, and a plan created and endorsed to implement this strategy. |
|
6 |
New_Zealand_ISM |
23.4.9.C.01 |
New_Zealand_ISM_23.4.9.C.01 |
New_Zealand_ISM_23.4.9.C.01 |
23. Public Cloud Security |
23.4.9.C.01 Data protection mechanisms |
|
n/a |
For each cloud service, agencies MUST ensure that the mechanisms used to protect data meet agency requirements. |
|
17 |
NZ_ISM_v3.5 |
GS-2 |
NZ_ISM_v3.5_GS-2 |
NZISM Security Benchmark GS-2 |
Gateway security |
19.1.11 Using Gateways |
Customer |
n/a |
Physically locating all gateway components inside a secure server room will reduce the risk of unauthorised access to the device(s).
The system owner of the higher security domain of connected security domains would be most familiar with the controls required to protect the more sensitive information and as such is best placed to manage any shared components of gateways. In some cases where multiple security domains from different agencies are connected to a gateway, it may be more appropriate to have a qualified third party manage the gateway on behalf of all connected agencies.
Gateway components may also reside in a virtual environment ??? refer to Section 22.2 ??? Virtualisation and Section 22.3 ??? Virtual Local Area Networks |
link |
10 |
NZISM_Security_Benchmark_v1.1 |
GS-2 |
NZISM_Security_Benchmark_v1.1_GS-2 |
NZISM Security Benchmark GS-2 |
Gateway security |
19.1.11 Using Gateways |
Customer |
Agencies MUST ensure that:
all agency networks are protected from networks in other security domains by one or more gateways;
all gateways contain mechanisms to filter or limit data flow at the network and content level to only the information necessary for business purposes; and
all gateway components, discrete and virtual, are physically located within an appropriately secured server room. |
Physically locating all gateway components inside a secure server room will reduce the risk of unauthorised access to the device(s).
The system owner of the higher security domain of connected security domains would be most familiar with the controls required to protect the more sensitive information and as such is best placed to manage any shared components of gateways. In some cases where multiple security domains from different agencies are connected to a gateway, it may be more appropriate to have a qualified third party manage the gateway on behalf of all connected agencies.
Gateway components may also reside in a virtual environment – refer to Section 22.2 – Virtualisation and Section 22.3 – Virtual Local Area Networks |
link |
8 |
RMiT_v1.0 |
10.16 |
RMiT_v1.0_10.16 |
RMiT 10.16 |
Cryptography |
Cryptography - 10.16 |
Shared |
n/a |
A financial institution must establish a robust and resilient cryptography policy to promote the adoption of strong cryptographic controls for protection of important data and information. This policy, at a minimum, shall address requirements for:
(a) the adoption of industry standards for encryption algorithms, message authentication, hash functions, digital signatures and random number generation;
(b) the adoption of robust and secure processes in managing cryptographic key lifecycles which include generation, distribution, renewal, usage, storage, recovery, revocation and destruction;
(c) the periodic review, at least every three years, of existing cryptographic standards and algorithms in critical systems, external linked or transactional customer-facing applications to prevent exploitation of weakened algorithms or protocols; and
(d) the development and testing of compromise-recovery plans in the event of a cryptographic key compromise. This must set out the escalation process, procedures for keys regeneration, interim measures, changes to business-as-usual protocols and containment strategies or options to minimise the impact of a compromise. |
link |
10 |
RMiT_v1.0 |
11.15 |
RMiT_v1.0_11.15 |
RMiT 11.15 |
Data Loss Prevention (DLP) |
Data Loss Prevention (DLP) - 11.15 |
Shared |
n/a |
A financial institution must design internal control procedures and implement appropriate technology in all applications and access points to enforce DLP policies and trigger any policy violations. The technology deployed must cover the following:
(a) data in-use - data being processed by IT resources;
(b) data in-motion - data being transmitted on the network; and
(c) data at-rest - data stored in storage mediums such as servers, backup media and databases. |
link |
14 |